Posterior concentration rates for infinite dimensional exponential families
نویسندگان
چکیده
Frequentist properties of Bayesian nonparametric procedures have been increasingly studied in the last decade, following the seminal papers of Barron et al. [1] and Ghosal et al. [8] which established general conditions on the prior and on the true distribution to obtain posterior consistency for the former and posterior concentration rates for the latter. Consistency of the posterior distribution is admitted as a minimal requirement, both from a subjectivist and an objectivist view-point, see Diaconis and Freedman [6]. Studying posterior concentration rates allows for more refined results, in particular it helps in understanding some aspects of the prior and can be used to compare a Bayesian procedure with another Bayesian procedures together with frequentist procedures. In the frequentist nonparametric literature the
منابع مشابه
Convergence Rates for Bayesian Density Estimation of Infinite-dimensional Exponential Families
We study the rate of convergence of posterior distributions in density estimation problems for log-densities in periodic Sobolev classes characterized by a smoothness parameter p. The posterior expected density provides a nonparametric estimation procedure attaining the optimal minimax rate of convergence under Hellinger loss if the posterior distribution achieves the optimal rate over certain ...
متن کاملTesting a Point Null Hypothesis against One-Sided for Non Regular and Exponential Families: The Reconcilability Condition to P-values and Posterior Probability
In this paper, the reconcilability between the P-value and the posterior probability in testing a point null hypothesis against the one-sided hypothesis is considered. Two essential families, non regular and exponential family of distributions, are studied. It was shown in a non regular family of distributions; in some cases, it is possible to find a prior distribution function under which P-va...
متن کاملGeneralized maximum likelihood estimates for infinite dimensional exponential families
The notion of generalized maximum likelihood estimate for finite dimensional canonically convex exponential families, studied in detail in previous works of the authors, is extended to an infinite dimensional setting. Existence of the estimate when a generalized log-likelihood function is bounded above, and a continuity property are established. Related literature and examples are discussed. MS...
متن کاملTwo-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity
The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...
متن کاملTwo-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity
The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011